Unsteady evolution of localized unidirectional deep-water wave groups.
نویسندگان
چکیده
We study the evolution of localized wave groups in unidirectional water wave envelope equations [the nonlinear Schrödinger (NLSE) and the modified NLSE (MNLSE)]. These localizations of energy can lead to disastrous extreme responses (rogue waves). We analytically quantify the role of such spatial localization, introducing a technique to reduce the underlying partial differential equation dynamics to a simple ordinary differential equation for the wave packet amplitude. We use this reduced model to show how the scale-invariant symmetries of the NLSE break down when the additional terms in the MNLSE are included, inducing a critical scale for the occurrence of extreme waves.
منابع مشابه
STABILITY ANALYSIS FROM FOURTH ORDER NONLINEAR EVOLUTION EQUATIONS FOR TWO CAPILLARY GRAVITY WAVE PACKETS IN THE PRESENCE OF WIND OWING OVER WATER.
Asymptotically exact and nonlocal fourth order nonlinear evolution equations are derived for two coupled fourth order nonlinear evolution equations have been derived in deep water for two capillary-gravity wave packets propagating in the same direction in the presence of wind flowing over water.We have used a general method, based on Zakharov integral equation.On the basis of these evolution eq...
متن کاملEFFECT OF COUNTERPROPAGATING CAPILLARY GRAVITY WAVE PACKETS ON THIRD ORDER NONLINEAR EVOLUTION EQUATIONS IN THE PRESENCE OF WIND FLOWING OVER WATER
Asymptotically exact and nonlocal third order nonlinear evolution equations are derivedfor two counterpropagating surface capillary gravity wave packets in deep water in thepresence of wind flowing over water.From these evolution equations stability analysis ismade for a uniform standing surface capillary gravity wave trains for longitudinal perturbation. Instability condition is obtained and g...
متن کاملLinking reduced breaking crest speeds to unsteady nonlinear water wave group behavior.
Observed crest speeds of maximally steep, breaking water waves are much slower than expected. Our fully nonlinear computations of unsteadily propagating deep water wave groups show that each wave crest approaching its maximum height slows down significantly and either breaks at this reduced speed, or accelerates forward unbroken. This previously noted crest slowdown behavior was validated as ge...
متن کاملReduced-order precursors of rare events in unidirectional nonlinear water waves
We consider the problem of short-term prediction of rare, extreme water waves in irregular unidirectional fields, a critical topic for ocean structures and naval operations. One possible mechanism for the occurrence of such rare, unusually intense waves is nonlinear wave focusing. Recent results have demonstrated that random localizations of energy, induced by the linear dispersive mixing of di...
متن کاملTranscritical shallow-water flow past topography: finite-amplitude theory
We consider shallow-water flow past a broad bottom ridge, localized in the flow direction, using the framework of the forced Su–Gardner (SG) system of equations, with a primary focus on the transcritical regime when the Froude number of the oncoming flow is close to unity. These equations are an asymptotic long-wave approximation of the full Euler system, obtained without a simultaneous expansi...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
- Physical review. E, Statistical, nonlinear, and soft matter physics
دوره 91 6 شماره
صفحات -
تاریخ انتشار 2015